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STATIONARY CONFIGURATION OF FIBERS FORMED UNDER 

NONISOTHERMAL CONDITIONS 

A. L. Yarin UDC 532.222 + 681.7.068.4 

One of the important problems of chemical technology is fiber molding. Nevertheless, 
the substantial influence of heat transfer on fiber characteristics has been investigated 
insufficiently. The first step is to obtain stationary solutions. The stationary fiber con- 
figurations are computed numerically in [i]. In this paper analytic solutions of the station- 
ary problem are obtained under the assumption of large activation energy of the viscous flow. 

We shall consider the melt to be shaped to be a Newtonian fluid with viscosity dependent 
on the temperature according to the Arrhenius law. Such high values of the viscosity corre- 
spond to sufficiently low temperatures that flow practically ceases and the material solidi- 
fies. This approximation corresponds best to the behavior of melted glass [2, 3]. 

Let us examine the two most widespread technological processes: i) drawing a fiber from 
a cylindrical glass blank heated to high temperature (Fig. la), and 2) drawing through a 
spinneret hole from a tank containing the melt (Fig. lb). In both cases the fiber being 
drawn cools and solidifies during motion in the air. In the situations under consideration 
we shall consider the material to advance at a constant given velocity Vo. At the end of the 
shaping section, the fiber is incident on a receiving unit (bobbin) giving a certain value of 
the longitudinal velocity. We shall conduct the description within the framework of quasi- 
one-dimensional equations of continuity, momentum [4, 5], and heat propagation by assuming 
the flow to change sufficiently slowly along the fiber: 

~//Ot + O/I~Ox = O, / = =a ~, 

p/(OV/Ot + VOV/Ox) = OP/Ox, P = 3g/OV/Ox, p -= ~0 exp ( U / R T ) ,  ( l )  

V OT ~ 0 OT 

H e r e  t i s  t h e  t i m e ,  x i s  t h e  c o o r d i n a t e  m e a s u r e d  a l o n g  t h e  f i b e r  a x i s ,  f i s  t h e  a r e a  o f  t h e  
f i b e r  s e c t i o n  ( i t  i s  c o n s i d e r e d  t h a t  i t  h a s  a c i r c u l a r  s e c t i o n  o f  r a d i u s  a ) ,  V i s  t h e  m a g n i -  
t u d e  o f  t h e  a x i a l  v e l o c i t y  i n  t h e  f i b e r ,  T i s  t h e  t e m p e r a t u r e ,  p, ~, c ,  X a r e  t h e  d e n s i t y ,  
v i s c o s i t y ,  s p e c i f i c  h e a t ,  and h e a t  c o n d u c t i o n  o f  t h e  m e l t ,  P i s  t h e  m a g n i t u d e  o f  t h e  a x i a l  
f o r c e  i n  t h e  f i b e r  s e c t i o n ,  ~o and U a r e  t h e  p r e e x p o n e n t i a l  f a c t o r  and t h e  a c t i v a t i o n  e n e r g y  
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of the viscous flow, R is the gas constant, and qw is the heat flux in the direction of the 
external normal to the side surface of the fiber. 

We neglect gravity, friction drag in air, and surface tension of the melt. We consider 
the viscous forces so large that by comparison the inertial effects (the left side of the 
second equation in (i)) is negligible. Moreover, we will neglect longitudinal conductive 
heat transfer in the fiber. The assumptions made are physically justified and repeatedly 
applied earlier [6, 7]. We note that in the situation when the fiber is drawn continuously 
from the blank, (i) is used also to describe the flow development in the blank. The system 
(i) acquires the following form in the stationary case under consideration 

/ V  = Q, dP/dx = O, 9cQdT/dx = --2~aq~, (2) 

where Q is the volume flux determined by the boundary conditions of the problem, Q = va~V1 
(al and V~ are the fiber radius and velocity going to the receiving unit). Taking account 
of the continuity equation, we convert the momentum and heat distribution equations (2) to 
the form 

! dV 
= C exp (--  U/RT) ,  ~Tx 

A w 

where C is a constant of integration, and A w = --(2qw/9C)/-~. (Later we shall denote the 
heat flux in the area of the blank by qw = q < 0 and A w = A, respectively, while in the draw- 
ing stage where cooling occurs qw = q' > 0 and, respectively, A w = A'.) 

Introducing the function 9 = /V, we obtain the following system from (3) 

dg/dx = 0 9  exp ( - - U / B T ) ,  dT/dx  : A~ /9 .  (4)  

Selecting T as variable, we have 

d~/dT -- C92/Aw exp ( - - U / R T ) .  (5) 

We shall consider that heating of the glass from an initial temperature To to a temperature 
Tp occurs in a section of a certain, still not determined, length l in the blank while con- 
sidering molding from the blank, and the fiber temperature drops to T~ on a section of still 
undetermined length 11 ahead of the receiving unit in the drawing stage. In general, l and 
11 can be given, but the quantities Tp and T~ should be determined, but since dependences of 
the lengths ~ and l~ on the corresponding temperatures will be obtained as a result of solving 
the problem, then the problem formulation taken is simply more convenient. 

Using the notation 9o = /Vo, and integration (5), we obtain 

T 

, , ( -  u,R ) (6)  

~0 TO 

For sufficiently high values of the activation energy U (as really occur [2]), the integrand 
A-~exp(--U/RT) in (6) changes, because of the substantial nonlinearity of the Arrhenius law, 
only in a narrow boundary layer near T in the interval To T~T independently of the nature 
of the variation of A -~ with T; the heat flux is a power-law function of T. This permits 
utilization of the Laplace method [8], and obtaining an asymptotic expression for the inte- 
gral in the form 
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T 
A -1 exp ( - -  U/RT)  dT A -1 (T) RT 2 exp (-- U/RT) ~ (TJ exp (--  U ; R T J  exp (T - -  Tp) , u - -  u " 

T o 

The approximate second equality is obtained here by using the D. A. Frank-Kamenetskii 
method of decomposition [9]. Consequently, a good approximation is obtained when T is close 
to Tp; in the opposite case both the function itself and its approximation from [9] are al- 
most zero, and therefore, the approximation is again satisfactory. 

Therefore, by understanding A to be the value of A(Tp) we obtain the relationship be- 
tween the velocity and the temperature in the blank in the form 

I i C exp(--U/RTJ [ U (T__Tv) ] (7) 
- -  To A U/BT~ exp - n ~ 2 j L  RTm T 

S u b s t i t u t i n g  (7)  i n t o  t h e  s e c o n d  e q u a t i o n  in  ( 4 ) ,  and i n t e g r a t i n g  w i t h  t h e  b o u n d a r y  c o n d i t i o n  
x = 0, T = To t a k e n  i n t o  a c c o u n t ,  we f i n d  t h e  d e p e n d e n c e  o f  t h e  t e m p e r a t u r e  i n  t h e  b l a n k  on 
t h e  l o n g i t u d i n a l  c o o r d i n a t e  

( r  T0) T0 { Cexp(--U/BTp) T~ [ U__ ]} T0 in t - -  exp ( T -  Tv) = x. (8) 
A AU/BT~ 

In place of the unknown constant C we introduce the magnitude of the velocity at the end of 
the blank (at the end of the heating domain) Vp (and ~p = /Vp), which is also still unknown. 
Taking account of (7) we obtain 

C = ( I T 0  ~pt )(AU/BT~)exp(U/RTp). (9) 

Moreover, by using (8) we obtain a dependence of the length of the heating zone I on Tp: 

l - -  (Tp - -  To)~o 9~ I n  T o .  ( 1 0 )  
A AU/BT~ ~p 

The relation between the length I and Tp is thereby set. 

Going over to dimensionless variables in (7) and (8) and using the continuity equation, 
by taking account of (8) and (9) we obtain a parametric dependence of the radius of the blank 
in the heating zone on the longitudinal coordinate 

s  V E  - -  ( V E  - -  ap) e x p  [0(7 - -  i)], (11)  

= I T  - -  T o  - -  0 - 1  l n { l  - -  (1  - -  ~v/VE) e x p  [ 0 ( T  - -  l)]}]L*/L. 
Here the radius is referred to a~, the temperature to Tp, x to the total length of the fiber 
being molded L = l + l~; ap is the dimensionless value of the radius at the end of the heat- 
ing zone (still unknown), and E is the multiplicity of the drawing which equals VI/Vo = (no/ 
ai)2 In addition 

L* :--pcTpQ/2qnao, 0 = U/RTp, 
1 = L * [ t  - -  To + 0 - ~  In (V-E/~v)] (q = q(Tv) < 0 ) .  

The unknown quantity ~p will be determined after having solved the problem of behavior of the 
fiber in the drawing stage when it cools (q' > 0). This latter solution should, in combina- 
tion with (ii), assure continuity of the distributions of the radius, the velocity, and the 
force in the fiber section along its length, by which ap is indeed determined. In the draw- 
ing stage (5) is integrated in the form 

T 

d__=~ = C (A') -1 exp ( - -  U/BT) dT. (12) 
~p Tp 

Here, as before, ~p = /Vp and Yp is the unknown velocity at the end of the heating zone, i.e., 
in the initial section of the drawing part. 

Using the Laplace method and decomposition [9], we find 
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- ~ =  ~p-- A" U/RT~ expL p(T- -  TP) -- i ~ (13) 

A' = A'(Tv). 
Taking account of the boundary condition on the receiving unit ~ = ~i = /V~ for T = TI we 
obtain from (13) 

C : (.~1 ~ ~p/J-~ (A'U/RT~) exp (U/RTv). (14) 

Continuity of the force distribution along the fiber is assured by the equality of the ex- 

pressions (9) and (14): the force in the section is P = 6voQC. Therefore, (i/~o -- I/~)A = 
(i/~ -- i/~p)A'. Finding ~p from this latter equation and using the constancy of the vglume 
flux along the fiber, we obtain the following expression for ap 

~p = (V-E -- A'/A)/(I -- A'/A). (15) 
By using (15), the equations (ii) permit determination of the profile of the blank in the 
heating zone. Let us note that A'/A< 0. 

Using the velocity-temperature relationship described in the fiber cooling and drawing 
zones by (13) and (14), and also the continuity equation, we can obtain a dependence of the 
radius on the temperature. Then by integrating the second equation in (4), we obtain the 
temperature distribution along this zone: 

[ I-- 'VE [exp [O(T--1)] -- i}] 
a ~ a v 1 ~/E'-- A'/A ' (16) 

-x=--~--~- ~ "VEL* A [ I I--A'/A~7g I - - ] /E  e x p [ 0 ( ' - - l ) ] } ] .  
L A, P--I- -O-~I"Lv~-2~A V ~ - x / A  

As before, the upper bar denotes dimensionless quantities. 

Setting T = T~ in the last equation of (16), we calculate the total length of the fiber 
from the section in which heating of the blank started to the section in which the fiber is 
cooled to T = T~: 

] \( ! - -A' /A )]  " ' V - E - A ' / A  L = Z + l, = z + V E L *  ~ 71 - t - 0 - 1  i n  

The connection between the length 11 and TI is thereby set. The expression for the longi- 

tudinal force in a fiber being dra~m from a blank has the form 

P = { [12n~oao(--q)O exp (0)]/(9cT~) } (1 -- a j ] /E ) .  
Determination of the stationary configuration of a fiber being drawn from a spinner is per- 
fectly analogous to the consideration made above for the cooling zone of a fiber being drawn 

from a blank. The result has the form 

a = I/L" -- (I -- /E){exp [O(? -- i)] -- I}, (17) 

- 7 - I - 0 -I I. {z -Ij2 -- (E -'j~- -- I) exp [0 (T-- i)]} 

,x : 71-t&(20) -1 lnE 

Here, as before, the radius is referred to al, the temperature to the initial value To, and 

the scale for the longitudinal coordinate is 

pcTpVlal :rl-- t @ L~ -- 2q' T I n  E (q' (To) > 0) (18) 

the length in which the fiber temperature drops because of heat elimination from an initial 
value To known in advance on the spinner exit to the final value TI on the receiving unit. 
Conversely, the value LI can be considered given, and Tt can be determined from (18). 

It has therefore been obtained that the stationary configuration of a fiber being drawn 
from a blank is described by (ii), (15), (16) while a fiber being drawn from a spinner is de- 
scribed by (17). By passing to the limit 6 § 0 the results obtained do not permit arriving 
at the known isothermal solution ~ = (~)i-~ [6] (drawn from a spinner). This is natural 
since all the results obtained here correspond to the asymptotic 0 >>i. 
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Let us illustrate the results obtained. In the case of drawing fiberglass from a heated 
blank, it was assumed in the computation that the radius of the blank is ao = 0.19"10 -2 m, 
its temperature is To = 300~ the temperature to which the blank is heated is Tp = 1873~ 
the radius of the fiber at the receiving unit is al = 6.25"10 -5 m, the velocity is Vi = 0.3 
m/sec, the temperature is Ti = 300~ 

The glass density is p = 2.2"10 ~ kg/m 3, its specific heat is c = 1.043"103 J/(kg.deg). 

It was assumed that q(Tp) = --92.7-i04e kg/(m2.sec), where e is a dimensional factor with the 
meaning of the emissivity of the glass. 

Configurations of the fibers being drawn, which have different values of the dimension- 
less activation energy 8, are represented in Fig. 2, where ~ = i, q'/q = A'/A = --i, the value 

= 7 corresponds to curve i, ~ = i0 to 2, the vertical bars display the position of the heat- 
ing zone boundaries. It is seen that as 0 increases, the representation of quasi-one-dimen- 
sionality of the flow in the heating region has less and less of a foundation. In the exam- 
ple presented, the multiplicity of the drawing is quite large (E = 924); as E decreases the 
quasi-one-dimensional nature of the flow in the heating domain is not spoiled for values of 
e substantially greater than i0. 

Diminution of the heat flux supplied and eliminated for fixed values of ~ and the ratio 
A'/A(q'/q) results in a smoother passage from the heating of the drawing zone, as the data 

in Fig. 3 indicate, where 0 = 7, A'/A = --i, ~ = i, corresponds to curve i, and e = 0.5 to 
curve 2. 

The influence of the relative intensity of heat flux elimination and delivery on the 
configuration of the fiber being molded is illustrated in Fig. 4, where 8 = 7, ~ = i, A'/A = 

--0.2 corresponds to curve l, A'/A = --i to curve 2, A'/A = -- 3 to 3. An increase in the heat 
elimination intensity for a fixed heat flux to the blank results in a noticeable accelera- 
tion of fiber molding. The total length of the fiber being molded diminishes abruptly with 
the increase in heat elimination when the temperature TI is given. However, intensification 
of the heat elimination also results in noticeable growth of the longitudinal force in the 
fiber, which can cause its rupture. Computed profiles of fibers molded by drawing from a 
spinner with radius 0.19"10 -2 m are shown in Fig. 5. The magnitudes of the heat fluxes q'" 
(To) = 92.7"103 J/(m2.sec) (curve i) and q'(To) = 92.7"104 J/(m2"sec) (curve 2), To = 1873~ 
and the values of the remaining fiber parameters are the same as in the computations for 
drawing from blanks. 
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STABILITY OF THE PLANE WAVE FRONT OF FLUID EVAPORATION 

E. B. Levchenko and A. L. Chernyakov UDC 532.70 + 535.211 

An evaporation wave is propagated in the bulk of a substance subjected to a powerful 
radiation flux in a condensed medium. In those cases when the domain thickness in front of 
the wave front heated because of heat conduction is small compared with the characteristic 
dimensions of the system under consideration, the realization of a quasistationary regime 
for which the velocity of wave front motion is determined by the instantaneous value of the 
energy flux density absorbed in the medium, is generally possible. In fact, the process of 
material rupture under sufficiently large energy flux intensities (for Q > 105-106 W/cm 2 for 
metals) is accompanied, asa rule, by different nonstationary phenomena such as self-oscilla- 
tions in the gas flow, ejection of substance in the form of drops, etc. [i], which apparently 
indicates instability of the quasistationary evaporation mode. 

In this paper the stability of the plane fluid evaporation wave front considered as the 
surface of discontinuity of the thermodynamic functions of the substance, is investigated. 
An analogous problem in the theory of slow combusion was investigated by Landau [2], who also 
discovered the instability mechanism of a plane chemical reaction wave associated with the 
development of vortical disturbances in the flux of combustion products. In application to 
the process of substance evaporation by powerful radiation flux, the mentioned instability 
mechanism turns out to be decisive for the development of fluctuations of a front with wave- 
lengths commensurate to the diameter of the radiation focusing spot. A substantial feature 
of the evaporation process, because of which results obtained in the theory of slow combus- 
tion [2, 3] are not directly applicable to the latter, is the high velocity of vapor escape, 
which is commensurate with the speed of sound in a gas. Taking account of the vapor com- 
pressibility, which is necessary in this case, results in a change in both the conditions of 
origination and the nature of the development of the instability of the plane fluid evapora- 
tion wave front. 

Let us select a reference system in which the plane evaporation wave front is at rest, 
and we direct the Cartesian z axis along the normal to the front so that the domain z < 0 is 
filled with fluid and z > 0 with vapor. In this coordinate system the temperature profile 
is stationary and has the following form in the absence of radiation absorption in the vapor 
during surface evaporation: 

< o, 
T o ( z ) = | T o g ( z ) = c o n s t ,  z > O ,  

Toz = Tos exp \ ~--'~-1 ~ • ~l -- vz,/Zz ' 

where Q is the energy flux density, ~ is the coefficient of radiation absorption, x~ = 
P~cTxl is the heat conduction, and c7, p7 is the specific heat and density of the fluid. The 
surface temperature Tos and the flow velocity v~ are determined from the energy conservation 
law 
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